Unix Shell Commands

alias

Syntax:

alias <var>=<original string>

Description
Alias command is used to make aliases or alternative names for commands.

Ex: alias dir=’ls –l’

at

Syntax

at time [date] [increment]

Description

at and batch commands execute one or more commands at a later time. at and batch differ in the way the set of commands, or job, is scheduled. at allows you to specify a time when the job should be executed. batch executes the job when the system load level permits. at takes the following arguments:

 time
The time can be specified as HH or HHMM. The time can alternately be specified as two numbers separated by a colon, meaning hour: minute. A suffix am or pm can be appended; otherwise a 24-hour clock time is understood. The special names, noon, mid-night, and now are also recognized.

 date
An optional date can be specified as either a month name followed by a day number (and possibly year number preceded by an optional comma) or a day of the week (spelt in full or abbreviated to three characters). Two special days, today and tomorrow are recognized. If no date is given, today is assumed if the given hour is greater than the current hour and tomorrow is assumed if it is less. If the given month is less than the current month (and no year is given), next year is assumed.

 increment
The time and optional date arguments can be modified with an increment argument of the form +n units, where n is an integer and units is one of the following: minutes, hours, days, weeks, months, or years. The singular form is also accepted, and +1 unit can also be written next unit.

Example:

 at 0815am Jan 24 < abc

 at 8:15am Jan 24 < abc

 at now + 1 day < abc

 at 5 pm Friday next week < abc
 at time < file < abc

where, abc is a shell script.

banner

Syntax

banner strings

Description

The banner command prints its arguments (each up to 10 characters long) in large letters on the standard output. This is useful for printing names at the front of printouts.

cal

Syntax

cal [[month] year]

Description

The cal command prints a calendar for the specified year. If a month is also specified, a calendar for that month only is printed. If no arguments are specified, the current, previous, and next months are printed, along with the current date and time. The year must be a number between 1 and 9999; month must be a number between 1 and 12 or enough characters to specify a particular month.

Example:

 cal ap 1997 prints calendar of april 1997.

 cal 84 refers to the year 84, not 1984.

cat

Syntax

cat [-v] [-t] [-e] file . . .

Description

cat reads each file in sequence and writes it on the standard output. If no input file is given, or if a single dash (-) is given, cat reads from the standard input.

 -v
Causes non-printing characters to be displayed.

 -t
Causes tabs to be printed as ^I and form feeds as ^L.

 -e
Causes a ``$'' character to be printed at the end of each line

Examples

 cat file

displays the file on the standard output:

 cat file1 file2 > file3
concatenates file1 and file2 and places the result in file3:

 cat file1 >> file2

concatenates file1 and appends it to file2:

cd

Syntax

cd [directory]

Description

If specified, directory becomes the new working directory; otherwise the value of the shell parameter $HOME is used.

chgrp

Syntax:

chgrp <new group> <file>

Description
The chgrp command is used to change the group of a file(s). The owner of the file or the root is permitted to change the group of the file(s).

chmod

Syntax

chmod [who] [+|-|=] [mode . . .] file . . .

chmod mode file . . .

Description

The chmod command changes the access permissions (or mode) of a specified file or directory. Users other than the super user use it to control file and directory access. mode may be an expression composed of letters and operators (called ``symbolic mode''), or a number (called ``absolute mode''). Symbolic mode

 chmod command using symbolic mode has the form:

 chmod [who][+|-|=][mode . . .] file . . .

In place of who you can use any of the letters, a (all users) or g (group) or o (others) or u (user.)

The operators are:

 + Adds permission.

 - Removes permission.

 = Assigns the indicated permission and removes all other permissions (if any) for that variable. If no permission is assigned, existing permissions are removed.

 Permissions are set using any combination of the following letters for mode:

 x Execute (sets search permission for directories).

 r Read.

 w Write.

 Absolute mode

 chmod command using absolute mode has the form:

 chmod mode filename

Where, mode is a 3 digit octal number. 1st digit represents user, 2nd represents group, and the 3rd represents others. Each octal digit is a 3-bit binary digit representing read, write and execution permissions respectively.

	Binary
	Octal
	permissions

	rwx
	Number
	granted

	000
	0
	none

	001
	1
	execute

	010
	2
	write

	011
	3
	write and execute

	100
	4
	read

	101
	5
	read and execute

	110
	6
	read and write

	111
	7
	all

	
	
	

Examples

Symbolic mode

 chmod +x file

Gives all users execute permission for file:

 chmod go-rw file
Removes read and write permission for group and others from file:

 chmod o+rw file
Gives other users read & write permission for file:

 chmod g+r, o+r file
gives read permission to group and others:

 chmod +l file

Causes the mandatory locking of file on access:

Absolute mode

 chmod 777 file

Gives all users read, write and execute permission for file:

 chmod 600 file

Gives read and write permission to the owner of file only:

chown

Syntax

chown owner file . . .

Description

The chown command changes the owner ID of each file to the user ID specified by owner. The owner may be either a decimal user ID or a login name found in the file /etc/passwd.

chgrp

Syntax

chgrp group file . . .

Description

chgrp changes the group ID of each file to group. Either its name or its ID (a decimal number) may specify a group. The names and corresponding IDs of each group may be found in the file /etc/group. Only the owner or the super user can change the group ID of a file.

cp

Syntax

cp file1 file2

cp files directory

Description

There are two ways to use the cp command. With the first way, file1 is copied to file2. Under no circumstance can file1 and file2 be identical. With the second way, directory is the location of a directory into which one or more files are copied. This directory must exist prior to the execution of the cp command.

date

Syntax

date [mmddhhmm[yy]] [+format]

Description

If no argument is given, or if the output format is specified following +, the current date and time are printed as defined by the locale. Otherwise, you may set the date and time if you are the super user. date normally performs its calculations taking care of the conversion to and from local standard and daylight time. When setting the date and time, specify it in the form MMddhhmm[yy] where:

 MM is the month number

 dd is the day number in the month

 hh is the hour number (24-hour system)

 mm is the minute number

 yy are the last 2 digits of the year number (optional)

For example, date 10080045 sets the date to Oct 8, and the time to 12:45 AM, if the local language is set to English. The current year is taken by default if no year is specified. If the argument begins with +, the output of date is under the control of the user. All output fields are of fixed size (zero padded if necessary). Each field descriptor begins with a percent sign ``%''and is replaced in the output by its corresponding value. All other characters are copied to the output without change. The string is always terminated with a new-line character.

Field descriptors

 %d Day of month - 01 to 31

 %m Month of year - 01 to 12

 %y Last 2 digits of year - 00 to 99

 %Y Year (including century), as decimal numbers

 %H Hours in HH format

 %M Minutes in MM Format

 %S Seconds in SS Format

 %D Date as mm/dd/yy

 %T Time as HH:MM:SS

 %p Equivalent of AM or PM for current locale

 %r Time in AM/PM notation

 %x Current date, as defined by the locale

 %X Current time, as defined by the locale

 %n Inserts a newline character

Examples

 The line date '+DATE: %m/%d/%y%nTIME: %H:%M:%S' generates the output:

 DATE: 08/01/90

 TIME: 14:45:05

dd

Syntax

dd if=<input filename> of=<output file name> [bs=number of bytes]

Description

dd copies number of bytes from input file to output file. bs can be represented in many ways.

bs=nk means bs is in kilo bytes. bs=n means bs is in blocks. bs=nb means bs is in bytes.

df

Syntax

df [filesystems]

Description

 df prints out the number of free blocks and free i-nodes available for on-line file-systems.

diff

Syntax

diff [-b] file1 file2

Description

The diff command tells the user what lines must be changed in two files to bring them into agreement.

diff /tmp dog Compares the file named dog that is in the /tmp directory, with the file dog in the current directory.

 -b causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks to compare equal.

du

Syntax

du [-afs] [names]

Description

The du command gives the number of blocks contained in all files and directories recursively within each directory and file specified by the names argument. The block count includes the indirect blocks of the file. If names are missing, the current directory is used.

 -a
causes an entry to be generated for each file. Otherwise only one entry per directory is generated

 -s
causes only the grand total for each of the specified names to be given.

 -f
causes du to display the usage of files in the current file system only.

echo

Syntax

echo [-n] [arg] . . .

Description

The echo command writes its arguments on the standard output. The -n option prints a line without the new-line; this is the same as using the \c escape sequence. echo also understands C-like escape conventions; beware of conflicts with the shell's use of ``\'':

 \b backspace

 \c print line without new-line

 \f form-feed

 \n new-line

 \r carriage return
 \t tab

 \v vertical tab

 \\ backslash

\n The 8-bit character whose ASCII code is a 1, 2 or 3-digit octal number. In all cases, n must start with a zero. For example:

 echo "\07"
echoes <Ctrl>g

 echo "\007"
also echoes <Ctrl>g

 echo "\065"
echoes the number ``5''

 echo "\0101"
echoes the letter ``A''

 The echo command is useful for producing diagnostics in command files and for sending known data into a pipe.

find

Syntax

find <pathname> <expressions>

Description
Find searches for the files starting from the given pathname (directory) according to the expressions specified. Following are some of the expressions available:

 -cpio dev

Backup the current file to device dev.

 -ctime n

True if file was last changed exactly n days ago

 -ctime +n

True if file was last changed more than n days ago

 -ctime –n

True if file was last changed less than n days ago

 -exec command \;
Execute the command.

 -exec command {} \;
Execute the command after replacing the {} by the matching path name

 -name filename

Search for the filename (file name can be any pattern including wild-cards)

 -ok command \;
Execute the command after confirmation

 -ok command {} \;
Executes the command after substitution with confiramtion

 -print

Prints the result of the find. (If output is required, this option must be used)

 -size n

True if the file size is exactly n blocks long (where 1 block is 512 bytes generally)

 -size +n

True if the file size is more than n blocks

 -size -n

True if the file size is less than n blocks

 -type t

True if the file type is t, where t can be any of the following

f
regular file

d
directory

b
block IO device

c
character IO device

 -user uname

True if the file is owned by user uname

 -group gname

True if the file belongs to the group gname

Ex:

 find / -name “*.c” –print

finds all files that ends with .c and prints them.

 find / -size +2 –name “*.c” –print
finds all files that ends with c and size greater than 2 blocks

 find /-user svl –print

prints all the files belong to the user svl

 find /usr –type d –print

Prints all the subdirectories in /usr directory

grep, egrep, fgrep

Syntax

grep [-chilnsvy] [-f expfile] [[-e] expression] [files]

egrep [-chilnv] [-f expfile] [[-e] expression] [files]

fgrep [-clnvxy] [-f expfile] [[-e] expression] [files]

Description

Commands of the grep family search the input files (or standard input if no files are specified) for lines matching a pattern. Normally, each matching line is copied to the standard output. If more than one file is being searched, the name of the file in which each match occurs is also written to the standard output along with the matching line (unless the -h option is used, see below).

 grep patterns are limited regular expressions

 grep uses a compact non-deterministic algorithm.

 egrep patterns are full regular expressions. It uses a fast deterministic algorithm

 fgrep patterns are fixed strings. fgrep is fast and compact.

The following options are recognized:

 -v All lines but those matching are displayed.

 -x Displays only exact matches of an entire line. (fgrep only.)

 -c Only a count of matching lines is displayed.

 -l Only the names of files with matching lines are displayed, separated by new lines.

 -h Prevents the name of the file from being printed, when searching multiple files. (Works with grep and egrep only.)

 -n Each line is preceded by its relative line number in the file.

-s Suppresses error messages (grep only.)

 -i Turns on case insensitive matching of letters

 -y Turns on case insensitive matching of letters -y does not work with egrep.

Note: -y is not a standard Unix option. It is maintained for backward compatibility with Xenix

 -e expression or strings Same as a simple expression argument, but useful when the expression begins with a dash (-).

 -f expfile The regular expression for grep or egrep, or strings list for fgrep is taken from the expfile.

In all cases (except with -h) the filename is output if there is more than one input file. Care should be taken when using the characters $ * [^ | () and \ in expression, because they are also meaningful to the shell. It is safest to enclose the entire expression or strings argument in single quotation marks. For example:

 grep '[Ss]omeone' text. file

This command would find all lines containing the word ``someone'' in the file text. file, whether the initial ``s'' is uppercase or lowercase.

Multiple strings can be specified in fgrep without using separate strings file by using the quoting conventions of the shell to imbed new-lines in the string argument. For example, if you were using the Bourne shell you might enter the following on the command line:

 fgrep 'Someone

 someone' text. file

This would have the same effect as the grep example above.

 egrep accepts regular expressions, with the addition of the following:

A regular expression followed by a plus sign (+) matches one or more occurrences of that expression.

A regular expression followed by a question mark (?) matches 0 or 1 occurrences of the regular expression.

Two regular expressions separated by a vertical bar (|) or by a new line match strings that are matched by either regular expression.

A regular expression may be enclosed in parentheses ``()'' for grouping. For example:

 egrep '([Ss]ome|[Aa]ny)one' text. file

This example displays all lines in text. file containing the words ``someone'' or ``anyone'', whether or not they are spelled with initial capital letters. Without the parentheses, this example would display all lines containing the words ``some'' or ``anyone'' (because the vertical bar (|) operator is of lower precedence than concatenation, see below).

The order of precedence of operators is :

[], then * ? +, then concatenation, then backslash (\) with new-line or vertical bar (|).

head

Syntax

head [-count] [file. . .]

Description

 The head filter prints the first count lines of each of the specified files. If no count is specified, then 10 lines are printed.

join

Syntax

join [options] file1 file2

Description

The join command prints to the standard output a join of the two relations specified by the lines of file1 and file2. file1 and file2 must be sorted in increasing collating sequence on the field on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in file1 and file2 that have identical join fields. The output line normally consists of the common field, then the rest of the line from file1, then the rest of the line from file2.

Blank, tab or new-line normally separates fields. In this case, multiple separators count as one, and leading separators are discarded.

The options are recognised are:

 -a n In addition to the normal output, produces a line for each unpairable line in filen, where n is 1 or 2.

 -e s Replaces empty output fields by string s.

 -j n m Joins on the mth field of file n. If n is missing, uses the mth field in each file.

-t c Uses character c as a field separator. Every appearance of c in a line is significant.

kill

Syntax

kill [-signo] processid . . .

Description

This will normally kill processes. The killed process must belong to the current user unless he is the super-user. If kill can not kill a process, then, kill -9 . . . is a sure kill.

ls

Syntax

ls [-1CFRadglmnoprstx] [directory | file . . .]

Description

l, lc, lf, lr, ls, and lx make up the ls family of commands.

 For each directory, the contents are listed. For each file, the filename is repeated and any other requested information is displayed. By default, the output is sorted alphabetically. When no argument is given, the current directory is listed. When several arguments are given, they are sorted appropriately; file arguments are processed before directories and their contents.

 l
provides a long listing, one file per line, by default.

 lc
lists files in columns by default.

 lf
lists files, indicating directories, executables, and symbolic links. Lf is a variant of lc

 lr
lists files, recursively listing any subdirectories.

 ls
lists files alphabetically, one entry per line, by default.

 lx
lists files in columns, but sorted across the page rather than down the page

Options are:

 -1
forces an output format with one entry per line, for lc, lf, lr, and lx.

 -C
lists in columns with entries sorted down the columns.

 -F
Causes directories to be marked with a trailing ``/'', executable files to be marked with a trailing ``*'', and symbolic links to be marked with a trailing ``@'' symbol.

 -R
Recursively lists subdirectories.

 -a
Lists all entries; ``. '' and ``. . '' are not suppressed.

 -d
If an argument is a directory, lists only its name; often used with -l to get the status of a directory.

 -g
The same as -l, except that the owner is not printed.

 -l
Lists in long format, giving mode, number of links, owner, group, size in bytes, and time of last modification for each file..

 -m
files are listed across the page, separated by commas.

 -n
The same as -l, except that the user ID (UID) and group ID (GID) numbers are printed, rather than the owner name and the group name.

 -o
The same as -l, except that the group is not printed.

 -p
Puts a slash (/) after each directory.

 -r
Reverses the order of sort to get reverse alphabetic or oldest first, as appropriate.

 -s
Gives size in 512-byte blocks, including indirect blocks, for each entry.

 -t
Sorts by time modified (latest first) instead of by name.

 -x
Lists in columns with entries sorted across, rather than down, the page.

The mode printed under the -l option (long listing, l) consists of 10 characters. The first character is:

 -
If the entry is an ordinary file.

 d
If the entry is a directory.

 l
If the entry is a symbolic link.

 b
If the entry is a block special file.

 c
If the entry is a character special file.

 p
If the entry is a named pipe.

 s
If the entry is a semaphore.

 m
If the entry is a shared data (memory) file.

The next 9 characters are the permissions, which control who can access the file. Permissions are in 3 sets of 3 bits each. The first set refers to the owner permissions; the second set to the group permissions; and the third set to permissions for all others.

Within each set, the three characters indicate permission to read, to write, or to execute the file, respectively.

The permissions are as follows:

 r
Read

 w
Write.

 x
Execute; on a directory, this gives search permission.

 s
Setuid, setgid: set the UID or GID of the executing process to that of the file when the file is executed.

 t
On an executable file: the binary image of the file will remain in memory after the first time it is used. On a directory: files in the directory can only be removed by their owners, or by root.

 T
The sticky bit (t bit) is set, but the underlying execute permission is not set.

 -
No permission is set.

man

Syntax

man [-bc] [title]

Description

The man program locates and prints the named title from the designated reference section.

 -b Leaves blank lines in output.

 -c Causes man to invoke man without special characters

mkdir

Syntax

mkdir [-m mode] [-p] dirname . . .

Description

The mkdir command creates the named directories in mode 777 (possibly altered by umask).

 -m
allows users to specify the mode to be used for new directories.

-p
creates dirname by creating all the non- existing parent directories first.

more / less

Syntax

more [-n] [-flrsw] [+linenumber] [+/pattern] [name . . .]

less [file name . . .]

Description

This filter displays continuous text one screen full at a time. It normally pauses after each full screen, displaying:

 --More--

at the bottom of the screen. If the user then presses carriage return, one more line is displayed. If the user presses the Space bar, another full screen is displayed. Other possibilities are described below.

The command line options are:

 -n
An integer which is the size (in lines) of the window which more will use instead of the default (Full Screen)

 -f
Causes more to count logical, rather than screen lines: that is, long lines are not folded.

 -s
Squeezes multiple blank lines from the output, producing only one blank line.

 +n
Starts up at line number. n

 +/p
starts up two lines before the line containing the regular expression p (Pattern).

less works just like more with a feature of moving backwards.

mesg

Syntax

mesg [yes/no]

Description

mesg command controls write access to the other users on the current terminal.
mv

Syntax

mv file1 file2

mv directory1 directory2

mv file . . . directory

Description

In the first form, the mv command moves (changes the name of) file1 to file2 (or directory1 to directory2).

If file2 already exists, it is removed before file1 is moved. If file2 has a mode, which forbids writing, mv prints the mode and prompts you for confirmation. If you type ``y'', the move takes place; if not, mv exits. No questions are asked (if file2 is not writeable) when the -f option is given. In the second form, mv can only move directories within a file system, the target directory2 should not exist. In the third form, one or more files are moved to the directory, keeping their original filenames. mv refuses to move a file onto itself.

passwd

Syntax

passwd [-d] [name]

Description

 The passwd command is used to change or delete password. (-d option Deletes the password.)

ps

Syntax

ps [options]

Description

The ps command prints certain information about active processes. Without options, information is printed about processes associated with the controlling terminal. Output consists of a short listing containing only the process ID, terminal identifier, cumulative execution time, and the command name. Otherwise, the information that is displayed is controlled by the selection of options. The options are given in descending order according to volume and range of information provided:

 -e Print information about every process now running.

 -a Print information about all processes most frequently requested:

 -f Generate a full listing

 -l Generate a long listing

 -t termlist List only process data associated with the terminal given in termlist.

 -u uidlist List only process data whose user ID number or login name is given in uidlist. In the listing, the numerical user ID will be printed unless you give the -f option, which prints the login name.

pwd

Syntax

pwd

Description

 pwd prints the pathname of the working (current) directory.

rm

Syntax

rm [-fir] file . . .

Description

The rm command removes the entries for one or more files from a directory. rm will not delete directories unless the -r option is used. The following options are recognized:

 -f
Do not prompt the user for confirmation for files on which the user does not have write permission..

 -I
Causes rm to ask whether to delete each file.

 -r
Causes rm to recursively delete the entire contents of the any directories specified, and the directories themselves.

rmdir

Syntax

rmdir [-p] [-s] dirname . . .

Description

The rmdir command removes the directory. A directory must be empty before it can be removed.

 -p
allows users to remove the directory dirname and its parent directories which become empty.

 -s
suppress the message printed on standard error when -p is in effect.

 rmdir will refuse to remove the root directory of a mounted file system.

sh

Syntax

sh [args]

Description

 sh executes the command or file. If no command or file is supplied, sh executes another copy of the shell.

sleep

Syntax

sleep time

Description

The sleep command suspends execution for time seconds.

sort

Syntax

sort [-cmu] [-ooutput] [-T tmpdir] [-ykmem] [-zrecsz] [-dfiMnr] [-b] [-tx] [+pos1] [-pos2] [files]

Description

sort sorts lines of all the named files together and writes the result on the standard output. The standard input is read if ``-'' is used as a file name or if no input files are named.

Comparisons are based on one or more sort keys extracted from each line of input. By default, there is one sort key, the entire input line, and ordering is determined by the collating sequence defined by the locale. The following options alter the default behavior:

 -c
Check that the input file is sorted according to the ordering rules; give no output unless the file is out of sort.

 -m
Merge only, the input files are already sorted.

 -ooutput The argument given is the name of an output file to use instead of the standard output. This file may be the same as one of the inputs. There may be optional blanks between -o and output.

 -T tmpdir tmpdir is the pathname of a directory to be used for temporary files. The default is to try /usr/tmp and /tmp. If -T is specified, then tmpdir and /tmp are tried. There must be a space between -T and tmpdir.

 -u
Unique: suppress all but one in each set of lines having equal keys. This option can result in unwanted characters placed at the end of the sorted file.

 -ykmem The amount of main memory used by the sort has a large impact on its performance. Sorting a small file in a large amount of memory is a waste. If this option is omitted, sort begins using a system default memory size, and continues to use more space as needed. If this option is presented with a value, kmem, sort will start using that number of kilobytes of memory, unless the administrative mini- mum or maximum is violated, in which case the corresponding extremum will be used. Thus, -y0 is guaranteed to start with minimum memory. By convention, -y (with no argument) starts with maximum memory.

 -zrecsz Causes sort to use a buffer size of recsz bytes for the merge phase. Input lines longer than the buffer size will cause sort to terminate abnormally. Normally, the size of the longest line read during the sort phase is recorded and this maximum is used as the record size during the merge phase, eliminating the need for the -z option. However, when the sort phase is omitted (-c or -m options) a system default buffer size is used, and if this is not large enough, the -z option should be used to prevent abnormal termination.

The following options override the default ordering rules.

 -d
``Dictionary'' order: only letters, digits and blanks (spaces and tabs) are significant in comparisons. Dictionary order is defined by the locale setting (see locale (M)).

 -f
Fold lowercase letters into uppercase. Conversion between lowercase and uppercase letters is governed by the locale setting (see locale (M)).

 -i
Ignore non-printable characters in non-numeric comparisons. Non- printable characters are defined by the locale setting (see locale (M)).

 -M
Compare as months. The first three non-blank characters of the field are folded to uppercase and compared so that ``JAN'' < ``FEB'' < . . . < ``DEC''. Invalid fields compare low to ``JAN''. The -M option implies the -b option (see below).

 -n
An initial numeric string, consisting of optional blanks, an optional minus sign, and zero or more digits with optional decimal point, is sorted by arithmetic value. The -n option implies the -b option (see below). Note that the -b option is only effective when restricted sort key specifications are in effect.

 -r
Reverse the sense of comparisons. When ordering options appear before restricted sort key specifications, the requested ordering rules are applied globally to all sort keys. When attached to a specific sort key (described below), the specified ordering options override all global ordering options for that key.

The notation +pos1 -pos2 restricts a sort key to one beginning at pos1 and ending at pos2. The characters at position pos1 and pos2 are included in the sort key (provided that pos2 does not precede pos1). A missing -pos2 means the end of the line.

Specifying pos1 and pos2 involves the notion of a field (a minimal sequence of characters followed by a field separator or a new line). By default, the first blank (space or tab) of a sequence of blanks acts as the field separator. All blanks in a sequence of blanks are considered to be part of the next field; for example, all blanks at the beginning of a line are considered to be part of the first field. The treatment of field separators can be altered using the options:

 -tx
Use x as the field separator character; x is not considered to be part of a field (although it may be included in a sort key). Each occurrence of x is significant (for example, xx delimits an empty field).

 -b
Ignore leading blanks when determining the starting and ending positions of a restricted sort key. If the -b option is specified before the first +pos1 argument, it will be applied to all +pos1 arguments. Otherwise, the b flag may be attached independently to each +pos1 or -pos2 argument (see below).

pos1 and pos2 each have the form m. n optionally followed by one or more of the flags b, d, f, i, n, or r. A starting position specified by +m. n is interpreted to mean the n+1st character in the m+1st field. A missing n means 0, indicating the first character of the m+1st field. If the b flag is in effect, n is counted from the first non-blank in the m+1st field; +m. 0b refers to the first non-blank character in the m+1st field.

A last position specified by -m. n is interpreted to mean the nth character (including separators) after the last character of the mth field. A missing n means 0, indicating the last character of the mth field. If the b flag is in effect, n is counted from the last leading blank in the m+1st field; -m. 0b refers to the first non-blank in the m+1st field.

When there are multiple sort keys, later keys are compared only after all earlier keys compare equal. Lines that otherwise compare equal is ordered with all bytes significant.

Examples

 Sort the contents of infile with the second field as the sort key:

 sort +1 -2 infile

Sort, in reverse order, the contents of infile1 and infile2, placing the output in outfile and using the first character of the second field as the sort key:

 sort -r -o outfile +1. 0 -1. 2 infile1 infile2

Sort, in reverse order, the contents of infile1 and infile2 using the first non-blank character of the second field as the sort key:

 sort -r +1. 0b -1. 1b infile1 infile2

Print the password file (passwd(F)) sorted by the numeric user ID (the third colon-separated field):

 sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first occurrence of lines having the same third field (the options - um with just one input file make the choice of a unique representative from a set of equal lines predictable):

 sort -um +2 -3 infile

split

Syntax

split [-n] [file [name]]

Description

The split command reads file and writes it in as many n-line pieces as necessary (default 1000), onto a set of output files. The name of the first output file is name with aa appended, and so on lexicographically. If no output name is given, x is default. If no input file is given, or if a dash (-) is given instead, the standard input file is used.

sync

Syntax

 sync

Description

The sync system call causes all information in memory that should be on disk to be written out.

tee

Syntax

tee [-i] [-a] [-u] [file] . . .

Description

The tee command transcribes the standard input to the standard output and makes copies in the files. The -i option ignores interrupts; the -a option causes the output to be appended to the files rather than overwriting them. The -u option causes the output to be un-buffered.

Examples

The following example illustrates the creation of temporary files at each stage in a pipeline:

 grep ABC | tee ABC. grep | sort | tee ABC. sort | more

 This example shows how to tee output to the terminal screen:

 grep ABC | tee /dev/tty | sort | uniq >final. File

time

Syntax

time command

Description

The given command is executed; after it is complete, time prints the time which elapsed during the command.

touch

Syntax

touch [-amc] [mmddhhmm[yy]] files

Description

The touch command causes the access and modification times of each argument to be updated. If no time is specified (see date(C)) the current time is used.

tr

Syntax

tr [-cds] [string1 [string2]]

Description

The tr command copies the standard input to the standard output with substitution or deletion of selected characters. Input characters found in string1 are mapped into the corresponding characters of string2. Any combination of the options -cds may be used:

 -c
Complements the set of characters in string1 with respect to the universe of characters whose ASCII codes are 001 through 377 octal.

 -d
Deletes all input characters in string1.

 -s
Squeezes all strings of repeated output characters that are in string2 to single characters.

The following abbreviation conventions may be used to introduce ranges of characters or repeated characters into the strings:

 [a-z] Stand for the string of characters whose ASCII codes run from character ``a'' to character ``z'', inclusive.

 [a*n] matches n repetitions of a. If the first digit of n is 0, n is considered octal; otherwise, n is taken to be decimal. A zero or missing n is taken to be huge; this facility is useful for padding string2.

The escape character ``\'' may be used as in the shell to remove special meaning from any character in a string. In addition, ``\'' followed by 1, 2, or 3 octal digits, stands for the character whose ASCII code is given by those digits.

The following example creates a list of all the words in file1, one per line in file2, where a word is taken to be a maximal string of alphabetic. The strings are quoted to protect the special characters from interpretation by the shell; 012 is the ASCII code for newline:

 tr -cs "[A-Z][a-z]" "[\012*]" <file1 >file2

umask

Syntax

umask [mask]

Description

The user file-creation mode mask is set to mask. The mask affects the file permission bits of files that are subsequently created. mask is either an octal integer or a string, treated the same as the mode operand by chmod (C).

If mask is an octal integer, only the low-order 9 bits are used. The value of each specified digit is ``subtracted'' from the corresponding ``digit'' in the new files' permissions (see umask(S) or creat(S) for details). Three bits can represent every octal digit (0-7). An octal integer used by umask consists of three digits (or nine bits). Each bit corresponds to a permission, which may be applied to a file when it is created, and each octal digit corresponds to one of the ``owner'', ``group'' and ``other'' permission groups. Thus, the octal digit for ``owner'' permissions can contain any combination of three bits, which are used to set ``read'', ``write'' and ``execute'' permissions.

The value of each specified digit is subtracted from the corresponding digit specified by the system for the creation of any file (see umask(S) or creat(S)). If a given mode bit in mask has the value ``1'', then that permission will be removed from the file; if the mode bit has the value ``0'', it has no effect.

For example, umask 022 removes group and others write permission (files normally created with mode 777 become mode 755 ; files created with mode 666 become mode 644).

If mask is a symbolic mode string the new value of the file mode creation mask is the logical complement of the file specified permission bits.

If mask is omitted, the current value of the mask is printed.

 umask is built into csh and sh.

Examples

 umask 037

The command sets the mode mask so that created files will have all the permission bits for ``other'' clear, and the write, execute bits set for ``group''. Other permission bits are not affected.

uname

Syntax

uname [-aAmnrsvX]

uname [-S system name]

Description

The uname command prints the current system name of the UNIX system on the standard output file. It is mainly useful to determine which system you are using. The options cause selected information returned by uname(S) to be printed:

 -a Print all the information corresponding to the options -s, -n, -r, -v, and -m.

 -A Print the license field (Activation State) information.

 -m Print the machine hardware name.

 -n Print nodename. The nodename is the name by which the system is known to a communications network.

 -r Print the operating system release.

 -s Print system name (default).

 -S system name

On your computer, specifying a system name argument to the -S option may change the system name and the nodename. (The system name and the nodename will both be changed to the name you specify.) The system name argument is restricted to 8 characters. Only the super user is allowed to do this.

 -v Print the operating system version. (This is the AT&T sub-version number of System V Release 3. 2, and always displays ``2'' under SCO UNIX System V. To determine the SCO version number, examine the line beginning ``Release = '' in the output from uname using the -X option.)

 -X Print information about system name, node name, operating system release number, kernel ID, processor type, bus type, serial number, number of users license (2-user, 8-user or unlimited), OEM number, origin number, and number of CPUs.

wall

Syntax

wall

Description

The wall command reads a message from the standard input until an end- of-file. It then sends this message to all users currently logged in preceded by ``Broadcast Message from . . . '' wall is used to warn all users, for example, prior to shutting down the system.

The sender should be super user to override any protections the users may have invoked.

wc

Syntax

 wc [-lwc] [files]

Description

The wc command counts lines, words and bytes in the named files, or in the standard input if no files are named. It also keeps a total count for all named files. A word is a maximal string of characters delimited by white space as defined by the current locale. The options l, w, and c may be used in any combination to specify that a subset of lines, words, and bytes (respectively) are to be reported. The default is -lwc. The order and number of options affect the order and number of output columns. The filename is not present if no filename is given on the command line. If more than one filename is given on the command line, the last line contains the total number of lines, words and bytes in all the files, and is labelled with the word ``total'' in the filename column.

who

Syntax

who [-aAbdfHlpqrstTu] [-n count] [file]

who am i

who am I

Description

The who command can list the user's name, terminal line, login time, and the elapsed time since activity occurred on the line; it also lists the process ID of the command interpreter (shell) for each current user. It examines the /etc/inittab file to obtain information for the Comments column, and /etc/utmp to obtain all other information. If file is given, that file is examined. Usually, file will be /etc/wtmp, which contains a history of all the logins since the file was last created. who with the am i or am I option identifies the invoking user. Except for the default -s option, the general format for output entries is:

 name [state] line time activity pid [comment] [exit]

With options, who can list logins, logoffs, reboots, and changes to the system clock, as well as other processes spawned by the init process. These options are:

 -a This option processes the /etc/utmp file or the named file with all options turned on.

 -A This option displays UNIX accounting information.

 -b This option indicates the time and date of the last reboot.

 -d This option displays all processes that have expired and have not been respawned by init. The ``exit'' field appears for dead processes and contains the termination and exit values (as returned by wait(C)), of the dead process. This can be useful in determining why a process terminated.

 -f The -f option will suppress pseudo-ttys from who output, except for remote logins.

 -H This option displays column headings above the regular output.

 -l This option lists only those lines on which the system is waiting for someone to login. The ``name'' field is LOGIN in such cases. Other fields are the same as for user entries except that the ``state'' field does not exist.

 -n The argument to this option specifies the number of columns for the

 -q option in displaying the user names.

 -p This option lists any other process which is currently active and has been previously spawned by init. The ``name'' field is the name of the program executed by init as found in /etc/inittab. The ``state'', ``line'', and ``idle'' fields have no meaning. The ``com- ment'' field shows the ``id'' field of the line from /etc/inittab that spawned this process. See inittab(F). -q This is a quick who, displaying only the names and the number of users currently logged on. When this option is used, all other options are ignored.

 -r This option indicates the current run level of the init process. In addition, it produces the process termination status, process id, and process exit status (see utmp(F)) under the ``idle'', ``pid'', and ``comment'' headings, respectively.

 -s This option is the default and lists only the ``name'', ``line'', and ``time'' fields.

 -t This option indicates the last change to the system clock (via the date(C) command) by root. See su(C).

 -T This option is the same as the -u option, except that the ``state'' of the terminal line is printed. The ``state'' describes whether someone else can write to that terminal. A plus character (+) appears if the terminal is writable by anyone; a minus character (-) appears if it is not. root can write to all lines having a plus character or a minus character in the ``state'' field. If a bad line is encountered, a question mark (?) is displayed.

 -u This option lists only those users who are currently logged in. The ``name'' is the user's login name. The ``line'' is the name of the line as found in the directory /dev. The ``time'' is the time that the user logged in. The ``activity'' is the number of hours and minutes since activity last occurred on that particular line. A dot (.) indicates that the terminal has seen activity in the last minute and is therefore ``current. '' If more than twenty-four hours have elapsed or the line has not been used since boot time, the entry is marked ``old. '' This field is useful when trying to determine whether a person is working at the terminal or not. The ``pid'' is the process ID of the user's shell. The ``comment'' is the comment field. It can contain information about where the terminal is located, the telephone number of the data set, the type of terminal if hard-wired, and so on.

Examples

 who –b

Indicates when the system was last rebooted.

 who –uH
Lists those users currently logged in, with a heading printed above the list.

write

Syntax

write user [tty]

Description

The write command copies lines from your terminal to that of another user. When first called, it sends the information of your-logname your tty number etc. to the other terminal. The recipient of the message should write back at this point. Communication continues until an end-of-file is read from the terminal or an interrupt is sent. At that point, write displays: ‘(end of message)’ on the other terminal and exits.

If you want to write to a user who is logged in more than once, the tty argument may be used to indicate the appropriate terminal.

Permission to receive messages from other users of the system may be granted or denied by use of the mesg(C) command. By default, users are not allowed to receive messages (this is for security). Issuing the mesg command from the login script may alter this. If the character ``!'' is found at the beginning of a line, write calls the shell to execute the rest of the line as a command. Output from the command is sent to the terminal; it is not sent to the remote user.

The following protocol is suggested for using write: when you first write to another user, wait for him or her to write back before starting to send. Each party should end each message with a distinctive signal

 ((o) for ``over'' is conventional), indicating that the other may reply;

 (oo) for ``over and out'' is suggested when conversation is to be terminated.

