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Network Programming 

Introduction to Interprocess Communication

Pipes 

Introduction:

There are two types of pipes for two-way communication: anonymous pipes and named pipes. Anonymous pipes enable related processes to transfer information to each other. Typically, an anonymous pipe is used for redirecting the standard input or output of a child process so that it can exchange data with its parent process. To exchange data in both directions (duplex operation), you must create two anonymous pipes. The parent process writes data to one pipe using its write handle, while the child process reads the data from that pipe using its read handle. Similarly, the child process writes data to the other pipe and the parent process reads from it. Anonymous pipes cannot be used over a network, nor can they be used between unrelated processes.

Properties of Pipe:

1) Pipes do not have a name. For this reason, the processes must share a parent process. This is the main drawback to pipes. However, pipes are treated as file descriptors, so the pipes remain open even after fork and exec.

2) Pipes do not distinguish between messages; they just read a fixed number of bytes. Newline (\n) can be used to separate messages. A structure with a length field can be used for message containing binary data.

3) Pipes can also be used to get the output of a command or to provide input to a command.

Creation of Pipes

Since A pipe provides a one-way flow of data.

Int pipe (int * filedes);

Int pipefd[2]; /* pipefd[0] is opened for reading;pipefd[1] is opened for writing */

· after call to fork 
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· after both calls to dup2 
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· after all calls to close 
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If the parent wants to receive data from the child, it should close fd1, and the child should close fd0. If the parent wants to send data to the child, it should close fd0, and the child should close fd1. Since descriptors are shared between the parent and child, we should always be sure to close the end of pipe we aren't concerned with. On a technical note, the EOF will never be returned if the unnecessary ends of the pipe are not explicitly closed.

Example:

Example to show how to create and use a pipe:

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <string.h>

#include <stdlib.h>

int  main(void)

{

        int     fd[2], nbytes;

        pid_t   childpid;

        char    string[] = "Hello, world!\n";

        char    readbuffer[80];

        pipe(fd);

        if((childpid = fork()) == -1)

        {

                perror("fork");

                exit(1);

        }

        if(childpid == 0)

        {

                /* Child process closes up input side of pipe */

                close(fd[0]);

                /* Send "string" through the output side of pipe */

                write(fd[1], string, (strlen(string)+1));

                exit(0);

        }

        else

        {

                /* Parent process closes up output side of pipe */

                close(fd[1]);

                /* Read in a string from the pipe */

                nbytes = read(fd[0], readbuffer, sizeof(readbuffer));

                printf("Received string: %s", readbuffer);

        }

        return(0);

}

Execution of Program & Result:

result:

hello world

read fd=3, write df =4

Named Pipes

Introduction

Named pipes allow two unrelated processes to communicate with each other. They are also known as FIFOs (first-in, first-out) and can be used to establish a one-way (half-duplex) flow of data.

Named pipes are identified by their access point, which is basically in a file kept on the file system. Because named pipes have the pathname of a file associated with them, it is possible for unrelated processes to communicate with each other; in other words, two unrelated processes can open the file associated with the named pipe and begin communication. Unlike anonymous pipes, which are process-persistent objects, named pipes are file system-persistent objects, that is, they exist beyond the life of the process. They have to be explicitly deleted by one of the processes by calling "unlink" or else deleted from the file system via the command line.

In order to communicate by means of a named pipe, the processes have to open the file associated with the named pipe. By opening the file for reading, the process has access to the reading end of the pipe, and by opening the file for writing, the process has access to the writing end of the pipe.

A named pipe supports blocked read and write operations by default: if a process opens the file for reading, it is blocked until another process opens the file for writing, and vice versa. However, it is possible to make named pipes support non-blocking operations by specifying the O_NONBLOCK flag while opening them. A named pipe must be opened either read-only or write-only. It must not be opened for read-write because it is half-duplex, that is, a one-way channel.

Shells make extensive use of pipes; for example, we use pipes to send the output of one command as the input of the other command. In real-life UNIX® applications, named pipes are used for communication, when the two processes need a simple method for synchronous communication.

Creating a Named Pipe

A named pipe can be created in two ways -- via the command line or from within a program.

From the Command Line

A named pipe may be created from the shell command line. For this one can use either the "mknod" or "mkfifo" commands.

Example:

To create a named pipe with the file named "npipe" you can use one of the following commands:

% mknod npipe p 

or

% mkfifo npipe

You can also provide an absolute path of the named pipe to be created.

Now if you look at the file using "ls -l", you will see the following output:

prw-rw-r-- 1 secf other   0  Jun 6 17:35  npipe

The 'p' on the first column denotes that this is a named pipe. Just like any file in the system, it has access permissions that define which users may open the named pipe, and whether for reading, writing, or both.

Within a Program

The function "mkfifo" can be used to create a named pipe from within a program. The signature of the function is as follows:

int mkfifo(const char *path, mode_t mode)

The mkfifo function takes the path of the file and the mode (permissions) with which the file should be created. It creates the new named pipe file as specified by the path.

The function call assumes the O_CREATE|O_EXCL flags, that is, it creates a new named pipe or returns an error of EEXIST if the named pipe already exists. The named pipe's owner ID is set to the process' effective user ID, and its group ID is set to the process' effective group ID, or if the S_ISGID bit is set in the parent directory, the group ID of the named pipe is inherited from the parent directory.

Opening a Named Pipe

A named pipe can be opened for reading or writing, and it is handled just like any other normal file in the system. For example, a named pipe can be opened by using the open() system call, or by using the fopen() standard C library function.

As with normal files, if the call succeeds, you will get a file descriptor in the case of open(), or a 'FILE' structure pointer in the case of fopen(), which you may use either for reading or for writing, depending on the parameters passed to open() or to fopen().

Therefore, from a user's point of view, once you have created the named pipe, you can treat it as a file so far as the operations for opening, reading, writing, and deleting are concerned.

Reading From and Writing to a Named Pipe

Reading from and writing to a named pipe are very similar to reading and writing from or to a normal file. The standard C library function calls read( ) and write( ) can be used for reading from and writing to a named pipe. These operations are blocking, by default.

The following points need to be kept in mind while doing read/writes to a named pipe:

· A named pipe cannot be opened for both reading and writing. The process opening it must choose either read mode or write mode. The pipe opened in one mode will remain in that mode until it is closed.

· Read and write operations to a named pipe are blocking, by default. Therefore if a process reads from a named pipe and if the pipe does not have data in it, the reading process will be blocked. Similarly if a process tries to write to a named pipe that has no reader, the writing process gets blocked, until another process opens the named pipe for reading. This, of course, can be overridden by specifying the O_NONBLOCK flag while opening the named pipe.

· Seek operations (via the Standard C library function lseek) cannot be performed on named pipes.

Full-Duplex Communication Using Named Pipes

Although named pipes give a half-duplex (one-way) flow of data, you can establish full-duplex communication by using two different named pipes, so each named pipe provides the flow of data in one direction. However, you have to be very careful about the order in which these pipes are opened in the client and server, otherwise a deadlock may occur.

For example, let us say you create the following named pipes:

NP1 and NP2

In order to establish a full-duplex channel, here is how the server and the client should treat these two named pipes:

Let us assume that the server opens the named pipe NP1 for reading and the second pipe NP2 for writing. Then in order to ensure that this works correctly, the client must open the first named pipe NP1 for writing and the second named pipe NP2 for reading. This way a full-duplex channel can be established between the two processes.

Failure to observe the above-mentioned sequence may result in a deadlock situation.

Benefits of Named Pipes

· Named pipes are very simple to use.

· mkfifo is a thread-safe function.

· No synchronization mechanism is needed when using named pipes.

· Write (using write function call) to a named pipe is guaranteed to be atomic. It is atomic even if the named pipe is opened in non-blocking mode.

· Named pipes have permissions (read and write) associated with them, unlike anonymous pipes. These permissions can be used to enforce secure communication.

Limitations of Named Pipes

· Named pipes can only be used for communication among processes on the same host machine.

· Named pipes can be created only in the local file system of the host, that is, you cannot create a named pipe on the NFS file system.

· Due to their basic blocking nature of pipes, careful programming is required for the client and server, in order to avoid deadlocks.

· Named pipe data is a byte stream, and no record identification exists.

Code Samples

The code samples given here were compiled using the GNU C compiler version 3.0.3 and were run and tested on a SPARC processor-based Sun Ultra 10 workstation running the Solaris 8 Operating Environment.

The following code samples illustrate half-duplex and full-duplex communication between two unrelated processes by using named pipes.

Example of Half-Duplex Communication

In the following example, a client and server use named pipes for one-way communication. The server creates a named pipe, opens it for reading and waits for input on the read end of the pipe. Named-pipe reads are blocking by default, so the server waits for the client to send some request on the pipe. Once data becomes available, it converts the string to upper case and prints via STDOUT.

The client opens the same named pipe in write mode and writes a user-specified string to the pipe (see Figure 1).
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The following table shows the contents of the header file used by both the client and server. It contains the definition of the named pipe that is used to communicate between the client and the server.

Filename : half_duplex.h

#define HALF_DUPLEX

"/tmp/halfduplex"

#define MAX_BUF_SIZE
255

Server Code

The following table shows the contents of Filename : hd_server.c.

#include <stdio.h>

#include <errno.h>

#include <ctype.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include  "half_duplex.h"  /* For name of the named-pipe */

#include <stdlib.h>

int main(int argc, char *argv[])

{

    int fd, ret_val, count, numread;

    char buf[MAX_BUF_SIZE];

    /* Create the named - pipe */

    ret_val = mkfifo(HALF_DUPLEX, 0666);

    if ((ret_val == -1) && (errno != EEXIST)) {

        perror("Error creating the named pipe\n");

        exit (1);

    }

    /* Open the pipe for reading */

    fd = open(HALF_DUPLEX, O_RDONLY);

    /* Read from the pipe */

    numread = read(fd, buf, MAX_BUF_SIZE);

    buf[numread] = '0';

    printf("Half Duplex Server: Read From the pipe : %s\n",buf);

    /* Convert to the string to upper case */

    count = 0;

    while (count < numread) {

        buf[count] = toupper(buf[count]);

        count++;

    }

    printf("Half Duplex Server: Converted String : %s\n", buf);

}

Client Code

The following table shows the contents of Filename : hd_client.c

#include <stdio.h>

#include <errno.h>

#include <ctype.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <string.h>

#include <fcntl.h>

#include "half_duplex.h" /* For name of the named-pipe */

#include <stdlib.h>

int main(int argc, char *argv[])

{

    int fd;

    /* Check if an argument was specified. */

    if (argc != 2) {

    printf("Usage: %s<string to be sent to the server>n",argv[0]);

        exit (1);

    }

    /* Open the pipe for writing */

    fd = open(HALF_DUPLEX, O_WRONLY);

    /* Write to the pipe */

    write(fd, argv[1], strlen(argv[1]));

}

 Running the Client and the Server

When you run the server, it will block on the read call and will wait until the client writes something to the named pipe. After that it will print what it read from the pipe, convert the string to upper case, and then terminate. In a typical implementation this server will be either an iterative or a concurrent server. But for simplicity and to demonstrate the communication through the named pipe, we have kept the server code very simple. When you run the client, you will need to give a string as an argument.

First compile the programs and save the executable file as hd_server and hd_client respectively. Make sure you run the server first, so that the named pipe gets created.

Expected output:

1. Run the server:

% hd_server & 

The server program will block here, and the shell will return control to the command line.

2. Run the client:

% hd_client hello

3. The server prints the string read and terminates:

Half Duplex Server : Read From the pipe : hello
Half Duplex Server : Converted String : HELLO

Example of Full-Duplex Communication

In the following example, a client and server use named pipes for two-way communication. The server creates two named pipes. It opens the first pipe for reading and the second pipe for writing to communicate back to the client. It then waits for input on the read pipe. Once data is available, it converts the string to upper case and writes the converted string to the write pipe, which the client will read and print.

The client opens the first pipe for writing, and it sends data through this pipe to the server. The client opens the second pipe for reading, and through this pipe, it reads the server's response (see Figure 2).
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The following table shows the contents of the header file used by both the client and server. It contains the definition of the two named pipes that are used to communicate between the client and the server.

Filename : fullduplex.h

#define NP1

"/tmp/np1"

#define NP2

"/tmp/np2"

#define MAX_BUF_SIZE
255

Server Code

The following table shows the contents of Filename : fd_server.c

#include <stdio.h>

#include <errno.h>

#include <ctype.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include "fullduplex.h" /* For name of the named-pipe */

#include <stdlib.h>

#include<string.h>

int main(int argc, char *argv[])

{

    int rdfd, wrfd, ret_val, count, numread;

    char buf[MAX_BUF_SIZE];

    /* Create the first named - pipe */

    ret_val = mkfifo(NP1, 0666);

    if ((ret_val == -1) && (errno != EEXIST)) {

        perror("Error creating the named pipe");

        exit (1);

    }

    ret_val = mkfifo(NP2, 0666);

    if ((ret_val == -1) && (errno != EEXIST)) {

        perror("Error creating the named pipe");

        exit (1);

    }

    /* Open the first named pipe for reading */

    rdfd = open(NP1, O_RDONLY);

    /* Open the second named pipe for writing */

    wrfd = open(NP2, O_WRONLY);

    /* Read from the first pipe */

    numread = read(rdfd, buf, MAX_BUF_SIZE);

    buf[numread] = '0';

    printf("Full Duplex Server:Read From the pipe: %s\n", buf);

    /* Convert to the string to upper case */

    count = 0;

    while (count < numread) {

        buf[count] = toupper(buf[count]);

        count++;

    }

    /* 

 *      * Write the converted string back to the second 

 *           * pipe 

 *                */    

    write(wrfd, buf, strlen(buf));

}

Client Code

The following program shows the contents of Filename : hd_client.c.

#include <stdio.h>

#include <errno.h>

#include <ctype.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include "fullduplex.h" /* For name of the named-pipe */

#include <stdlib.h>

#include<string.h>

int main(int argc, char *argv[])

{

    int wrfd, rdfd, numread;

    char rdbuf[MAX_BUF_SIZE];

    /* Check if an argument was specified. */

    if (argc != 2) {

printf("Usage:%s<string to be sent to the server>n", argv[0]);

        exit (1);

    }

    /* Open the first named pipe for writing */

    wrfd = open(NP1, O_WRONLY);

    /* Open the second named pipe for reading */

    rdfd = open(NP2, O_RDONLY);

    /* Write to the pipe */

    write(wrfd, argv[1], strlen(argv[1]));

    /* Read from the pipe */

    numread = read(rdfd, rdbuf, MAX_BUF_SIZE);

    rdbuf[numread] = '0';

    printf("Full Duplex Client:Read From the  Pipe : %s\n", rdbuf);

}

Running the Client and the Server

When you run the server, it will create the two named pipes and will block on the read call. It will wait until the client writes something to the named pipe. After that it will convert the string to upper case and then write it to the other pipe, which will be read by the client and displayed on STDOUT. When you run the client you will need to give a string as an argument.

First compile the programs and save the executable file as fd_server and fd_client respectively. Make sure you run the server first, so that the named pipe gets created.

Expected output:

1. Run the server:

% fd_server & 

The server program will block here, and the shell will return control to the command line.

2. Run the client:

% fd_client hello

The client program will send the string to server and block on the read to await the server's response.

3. The server prints the following:

Full Duplex Server : Read From the pipe : hello

The client prints the following:

Full Duplex Client : Read From the pipe : HELLO

Message Queue 

Introduction

Processes that the UNIX kernel manages operate autonomously, which leads to a more stable system. However, every developer eventually runs into a situation where one group of processes needs to talk to another group of processes, perhaps to exchange data or send commands. This communication is called Inter-Process Communication (IPC). The System V (SysV) UNIX specification describes these three mechanisms for IPC, collectively referred to as SysV IPC:

· Message queues

· Semaphores

· Shared memory

Understanding the SysV model

The three SysV IPC methods have similar syntax despite their different purposes. In general, do the following:

1. Determine the proper IPC key to use with ftok(3).

2. Get the IPC-specific identifier associated with the IPC key using msgget(2), semget(2), or shmget(2) for message queues, semaphores, or shared memory, respectively.

3. Modify attributes of the IPC instance with msgctl(2), semctl(2), or shmctl(2).

4. Make use of the specific IPC instance.

5. At the end, destroy the IPC instance with msgctl(2), semctl(2), or shmctl(2) and the IPC_RMID flag.

Each instance of an IPC is given an identifier to distinguish it from other instances of the IPC that exist on the system. For example, two different applications might each decide to use shared memory segments, so the system-wide IPC ID distinguishes between the two instances. It might not be immediately obvious, but the first challenge is to figure out how to distribute the information regarding how to attach to a common IPC instance without having an IPC mechanism in the first place.

The ftok library call uses inode information from a given file and a unique identifier to come up with a key that stays the same as long as the file exists and the identifier is constant. Thus, two processes could use their configuration files and compile-time constants to come up with the same IPC key. The presence of the constant allows the same application to create multiple instances of an IPC mechanism by varying the constant.

Once a set of processes have independently come up with their IPC keys, they must then get a specific identifier associated with the particular IPC instance using one of the get system calls. The get calls all require the IPC key and a set of flags, as well as some size information for semaphores and shared memory. Because UNIX is a multiuser system, the flags include file permissions in the familiar octal format (so 666 means anyone can read and write). If the IPC_CREAT flag is also set, the IPC instance will be created if it does not exist. If the IPC_CREAT flag is not set and the IPC instance has not been created, the getcall returns an error.

A simpler way to distribute the IPC instance identifier exists for those applications with the capability to do so themselves. If you use a key of IPC_PRIVATE when calling get to create the IPC, the instance identifier will be unique. The other processes that need to attach to the IPC do not need to call get because they already have the identifier.

Applications are free to use the IPC instances once they have the identifier. Each IPC method is different and is addressed in its own section.

Passing messages through queues

Message queues provide a mechanism for one process to post a message that another process can pick up. Once the message is picked up, it is removed from the queue. Message queues are unique in that both processes do not have to exist simultaneously -- one process could post a message and exit, and the message could be picked up days later.

Messages must consist of a long integer followed by the message data. Listing 1 shows such a structure in C using a 100-byte message.


Listing 1. C definition of a sample message

struct mq_message {

    long type;  /* The type or destination */

    char text[100]; /* Data */

};

The receiver of the message uses the message type. When pulling a message from the queue, you can select the first available message or you can look for a particular message type. The message types to use are application-specific, making queues unique from other forms of IPC in that the kernel has some understanding of the application data being passed by reading thetype field.

Listing 2 shows the message submission part of message queuing.


A program that submits messages to a message queue - server

The following program shows the contents of Filename : mg_server.c.

#include <sys/types.h>

#include <sys/msg.h>

#include <sys/ipc.h>

#include <string.h>

#include <stdio.h>

int main (void) {

        key_t ipckey;

        int mq_id;

        struct { long type; char text[100]; } mymsg;

        /* Generate the ipc key */

        ipckey = ftok("/tmp/foo", 42);

        printf("My key is %d\n", ipckey);

        /* Set up the message queue */

        mq_id = msgget(ipckey, IPC_CREAT | 0666);

        printf("Message identifier is %d\n", mq_id);

        /* Send a message */

        memset(mymsg.text, 0, 100); /* Clear out the space */

        strcpy(mymsg.text, "Hello, world!");

        mymsg.type = 1;

        msgsnd(mq_id, &mymsg, sizeof(mymsg), 0);

}

The code in Listing 2 includes the necessary header files and then defines the variables to be used within the main function. The first order of business is to determine the IPC key using /tmp/foo as the common file and the number 42 as the ID. For demonstration purposes, this key is displayed on the screen using printf(3c). Next, the message queue is created usingmsgget. The first parameter to msgget is the IPC key, and the second is a set of flags. In the example, the flags include the octal permissions, which allow anyone with the IPC key to fully use this IPC, and the IPC_CREAT flag, which causes msgget to create the queue. Again, the result is printed to the screen.

Sending the message to the queue is simple. After zeroing out the memory space in the message, a familiar string is copied to the text part of the buffer. The message type is set to 1, and then msgsnd is called. msgsnd expects to be passed the queue ID, a pointer to the data, the size of the data, and a flag indicating whether the call should block or not. If the flag is IPC_NOWAIT, the call returns even if the queue is full. If the flag is 0, the call blocks until space is free on the queue, the queue is deleted, or the application receives a signal.

The client side of the equation is similar. Listing 3 shows code that retrieves the message that the server sent.


Program Code to retrieve a message from a queue- client 

The following program shows the contents of Filename : mg_client.c.

#include <sys/types.h>

#include <sys/msg.h>

#include <sys/ipc.h>

#include <string.h>

#include <stdio.h>

int main (void) {

        key_t ipckey;

        int mq_id;

        struct { long type; char text[100]; } mymsg;

        int received;

        /* Generate the ipc key */

        ipckey = ftok("/tmp/foo", 42);

        printf("My key is %d\n", ipckey);

        /* Set up the message queue */

        mq_id = msgget(ipckey, 0);

        printf("Message identifier is %d\n", mq_id);

        received = msgrcv(mq_id, &mymsg, sizeof(mymsg), 0, 0);

        printf("%s (%d)\n", mymsg.text, received);

}

The procedure to get the IPC key and the message queue identifier is similar to the server's code. The call to msgget does not specify any flags, because the server has already created the queue. If the application were designed such that the client might be started before the server, then both the client and server would have to specify permissions and the IPC_CREAT flag so that whichever application started first would create the queue.

mq_client.c then calls msgrcv to pull a message off the queue. The first three arguments specify the message queue identifier, a pointer to the memory space that will hold the message, and the size of the buffer. The fourth parameter is the type parameter, and it allows you to be selective about which messages you get:

· If the type is 0, the first message in the queue is returned.

· If the type is a positive integer, the first message in the queue with the same type is returned.

· If the type is a negative integer, the first message in the queue with the lowest value that is less than or equal to the absolute value of the specified type is returned. For example, if 2 and then 1 were to be added to the queue, callingmsgrcv with a type of -2 would return the 1 because it is the smallest, even though it was second in the queue.

The fifth parameter to msgrcv is the blocking flag again. Listing 4 shows the client and server in action.

Execution and result:

sunbox$ ./mq_server

My key is 704654099

Message identifier is 2

sunbox$ ./mq_client

My key is 704654099

Message identifier is 2

Hello, world! (104)

The output of the client and server show that they both came up with the same IPC key because they referenced the same file and identifier. The server created the IPC instance, which the kernel assigned the value of 2, and the client application learned this. It should then come as no surprise that the client pulls "Hello, world!" back from the message queue.

This example shows the simplest of situations. A message queue would be helpful for a short-lived process such as a Web transaction that submits work to a heavier back-end application such as some batch processing. A client can also be a server, and multiple applications can submit messages to the queue. The message type field allows applications to direct messages to particular readers.

Shared memory concept using Semaphores

Introduction

Shared memory is perhaps the most powerful of the SysV IPC methods, and it is the easiest to implement. As the name implies, a block of memory is shared between processes. Listing 7 shows a program that calls fork(2) to split itself into a parent process and a child process, communicating between the two using a shared memory segment.


 A program illustrating the use of shared memory

The following program shows the contents of Filename : shared_memory.c.

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

int main(void) {

        pid_t pid;

        int *shared; /* pointer to the shm */

        int shmid;

        shmid = shmget(IPC_PRIVATE, sizeof(int), IPC_CREAT | 0666);

        if (fork() == 0) { /* Child */

            /* Attach to shared memory and print the pointer */

                shared = shmat(shmid, (void *) 0, 0);

                printf("Child pointer  %u\n", shared);

                *shared=1;

                printf("Child value=%d\n", *shared);

                sleep(2);

                printf("Child value=%d\n", *shared);

        } else { /* Parent */

            /* Attach to shared memory and print the pointer */

                shared = shmat(shmid, (void *) 0, 0);

                printf("Parent pointer %u\n", shared);

                printf("Parent value=%d\n", *shared);

                sleep(1);

                *shared=42;

                printf("Parent value=%d\n", *shared);

                sleep(5);

                shmctl(shmid, IPC_RMID, 0);

        }

}

The parameters to shmget should be familiar by now: key, size, and flags. The size of the shared memory area in this example is a single integer. Listing 7 differs from previous examples in its use of IPC_PRIVATE for the IPC key. When IPC_PRIVATE is used, a unique IPC ID is guaranteed to be created, and it is expected that the application distributes the ID itself. In the example, shmid is known by both the parent and child because they are copies of each other. The fork system call creates a second copy of the current process called the child process, which is virtually identical to the parent. Execution of both processes resumes after the fork. The return value is used to determine if the current process is the parent or child.

Both the parent and child look similar. First, the shmat system call is used to get a pointer to the shared memory segment. shmat requires the shared memory ID, a pointer, and some flags. The pointer is used to request a particular address of memory. By passing 0, the kernel is free to choose whatever it wants. The flags are mostly vendor-specific, however SHM_RDONLY is a common flag that indicates the segment not written to. As shown in Listing 7, the common usage of shmat is to let the kernel decide everything.

shmat returns a pointer to the shared memory segment, which for debugging purposes is printed to the screen. Each process then takes a turn modifying the shared memory segment and printing out the value. Finally, the parent process removes the shared memory segment using shmctl(2). Listing 8 shows the output of this program.


Execution and Result:

sunbox$ ./shared_memory

Child pointer  ff390000

Child value=1

Parent pointer ff380000

Parent value=1

Parent value=42

Child value=42

You can see the sharing of the same memory space from the output. First, the value in the shared memory is 1, which the child set and the parents read. Then the parent set the value to 42, which the child read. Note how the parent and child processes had a different pointer address to the shared memory segment, even though they were accessing the same physical memory. This causes a problem for some data structures, such as linked lists, when the physical address is used, so you can use relative addressing if you are building complex structures in shared memory.

This example relies on one process pausing while the other is writing to the shared memory segment. In a real application, this would not be practical, so if your application could potentially have multiple processes writing to the same memory location, consider locking that area with a semaphore.

Conclusion

UNIX provides several methods for IPC. The SysV IPC methods are message queues, semaphores, and shared memory. Message queues allow one application to submit a message that other applications can pick up later, even after the sending application has finished. Semaphores ensure that multiple applications can lock resources and avoid race conditions. Shared memory allows multiple applications to share a common segment of memory, which provides a fast method of communicating and sharing large amounts of data. You can also use these methods together. For example, you can use a semaphore to control access to a shared memory segment.

IPC methods are helpful to application developers because they provide a standard way to communicate between applications and are portable across different UNIX flavors. The next time you find yourself needing to lock resources or share data between processes, try the SysV IPC mechanisms.

TCP Iterative server program using fork()

Write a C program, using sockets create client and server socket programs. Write a TCP iterative server program, in server program take user input for port number and bind the port address. Server waits for clients to connect. When client connects communication can happen using recv and sent functions. 

Following is the functionalities of server program:

1. Client sends message to server using sent functions.

2. Server receives all the messages, server ignores all the consonants in the message.

3. All the vowels in the message are converted into upper case.

4. Server returns the entire message to clients (with toggled vowel cases).

5. For example: "This is a test and sample message." to server will be sent back to client as " egassem elpmas dan tset a si sihT."

When client closes the connection server should close the communication with that client (socket). And once again wait for new clients to connect. Server program never exits. 

Using fork function rewrite the programs, such that this server can handle multiple client connections at one time. To test this you need to run simultaneously multiple copies of client executions. Please log on server machine number of clients it is handled at this time.

* server program  * 


The following program shows the contents of Filename : TCP_server.c.

#include
<stdio.h>

#include
<stdlib.h>

#include
<errno.h>

#include
<string.h>

#include
<sys/types.h>

#include
<sys/socket.h>

#include
<netinet/in.h>

#include
<arpa/inet.h>

#include
<sys/wait.h>

#include
<fcntl.h>

#include
<unistd.h>

#define MYPORT 13153 /*The port users will be connecting to*/

void readstring(int,char *);

int main(int C, char *V[] )

{


int
listensocket,connectionsocket,retbind;


struct
sockaddr_in



serveraddress,cliaddr;


socklen_t len;


char buf[100],databuf[1024];


listensocket = socket(AF_INET, SOCK_STREAM, 0 );


if (listensocket < 0 ) 


{



perror("socket" );



exit(1);


}


memset(&serveraddress, 0, sizeof(serveraddress) );


serveraddress.sin_family = AF_INET;


serveraddress.sin_port = htons(MYPORT);/*PORT NO*/

serveraddress.sin_addr.s_addr = 

htonl(INADDR_ANY);/*ADDRESS*/


retbind=bind(listensocket,(struct sockaddr*)&serveraddress,



sizeof(serveraddress));


/*Check the return value of bind for error*/


if(-1==retbind)


{




perror("BIND ERROR\n");



exit(1);


}


listen(listensocket,5);


/*Beginning of the Main Server Processing Loop*/


for (;;)


{


  printf("Server:I am waiting-----Start of Main Loop\n");



len=sizeof(cliaddr);



connectionsocket=accept(listensocket,






(struct sockaddr*)&cliaddr,&len);



if (connectionsocket < 0)



{




if (errno == EINTR) 




printf("Interrupted system call ??");




continue;



} 

    printf("Connection from %s\n", 

inet_ntop(AF_INET,&cliaddr.sin_addr,buf,sizeof(buf)));


   readstring(connectionsocket , databuf);


   close(connectionsocket);


   printf("Finished Serving One Client\n");


}

}

/***********************************************************

*
FUNCTION NAME:readstring

*
DESCRIPTION: Reads the string  sent by the client over the 

*
socket
and stores it in the array fname .

*
NOTES : No Error Checking is done .

*
RETURNS :void 

***********************************************************/

void readstring(


int connectionsocket,

/*Socket Descriptor*/
 


char *fname)
/*Array , to be populated by the string from client*/

/***********************************************************/

{



int pointer=0,n;


int len=0,a,b;


char rev[50],temp[50],temp1[50];

        int k,i;


while ((n=read(connectionsocket,(fname + pointer),1024))>0)


{



pointer=pointer+n;


}


fname[pointer]='\0';

printf("enter the string\n");

printf("Server :Received   %s\n " ,fname);

//strcpy(temp,fname);

k=strlen(fname);

  //              for(k=0;temp[k]!=0;k++);

    //              len=k;

a=0;

for(i=k-1;i>=0;i--)

temp[a++]=fname[i];

temp[a]='\0';

 printf("\nrev is %s\n", temp);

}

/***********************************************************/


/* client */

The following program shows the contents of Filename : TCP_client.c.


#include
<stdio.h>

#include
<stdlib.h>

#include
<unistd.h>

#include
<errno.h>

#include
<string.h>

#include
<sys/types.h>

#include
<sys/stat.h>

#include
<sys/socket.h>

#include
<netinet/in.h>

#include
<arpa/inet.h>

#include
<fcntl.h>

#define MAXBUFFER 1024

void sendstring(int , char *);

int main( int C, char *V[] )

{


int
sd,fd;

char c;


struct
sockaddr_in serveraddress;


char text[100];

int i=0;


sd = socket( AF_INET, SOCK_STREAM, 0 );


if( sd < 0 ) {



perror( "socket" );



exit( 1 );


}


if (V[1] == NULL ) {


printf ("PL specfiy the server's IP Address \n");


exit(0);


}


if (V[2] == NULL ) {


printf ("PL specify the server's Port No \n");


exit(0);


}


memset( &serveraddress, 0, sizeof(serveraddress) );


serveraddress.sin_family = AF_INET;


serveraddress.sin_port = htons(atoi(V[2]));//PORT NO


serveraddress.sin_addr.s_addr = inet_addr(V[1]);//ADDRESS


if (connect(sd,(struct sockaddr*)&serveraddress,




sizeof(serveraddress))<0)


{



printf("Cannot Connect to server");



exit(1);


}

printf("enter sentence to end enter #");

while(1)

{

c=getchar();

if(c=='#')

break;

text[i++]=c;

}

text[i]='\0';


sendstring(sd,text);


close(sd);


return 0;

}

/**********************************************************

*
FUNCTION NAME:sendstring

*
DESCRIPTION: sends a string over the socket .

*
NOTES : No Error Checking is done .

*
RETURNS :void 

***********************************************************/

void sendstring(


int sd,

/*Socket Descriptor*/
 


char *fname)
/*Array Containing the string */

/**********************************************************/

{
int n , byteswritten=0 , written ;


char buffer[MAXBUFFER];


strcpy(buffer , fname);


n=strlen(buffer);


while (byteswritten<n)


{


 written=write(sd , buffer+byteswritten,(n-byteswritten));


 byteswritten+=written;


}


printf("String  : %s sent to server \n",buffer);

}

/***********************************************************/

Execution & results:

1. Compiling and running server.

[user@localhost week9]$ cc tcpserver.c

[user@localhost week9]$ mv a.out tcpserver

[user@localhost week9]$ ./tcpserver

Server:I am waiting-----Start of Main Loop

Connection from 127.0.0.1

enter the string

Server :Received   Network Programming

Rev string is gnimmargorP krowteN

Finished Serving One Client

Server:I am waiting-----Start of Main Loop

2. Compiling and running client.

[user@localhost week9]$ cc tcpclient.c

[user@localhost week9]$ mv a.out tcpclient

[user@localhost week9]$./tcpclient 127.0.0.1 13153 

enter sentence to end enter #Network Programming#

String  : Network Programming sent to server 

TCP concurrent server to convert a given text into upper case using multiplexing system call “select”

The select() and poll() methods can be a powerful tool when you’re multiplexing network sockets. Specifically, these methods will indicate when a procedure will be safe to execute on an open file descriptor without any delays. For instance, a programmer can use these calls to know when there is data to be read on a socket. By delegating responsibility to select() and poll(), you don’t have to constantly check whether there is data to be read. Instead, select() and poll() can be placed in the background by the operating system and woken up when the event is satisfied or a specified timeout has elapsed. This process can significantly increase execution efficiency of a program. (If you are more concerned with performance than portability, we discuss some alternatives to select() and poll()toward the end of the article.)


select( ) description
The Single UNIX Specification, version 2 (SUSv2) defines select() as follows:
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds, struct timeval *timeout);

It takes these parameters:

·        int nfds - The highest file descriptor in all given sets plus one

·        fd_set *readfds - File descriptors that will trigger a return when data is ready to be read

·        fd_set *writefds - File descriptors that will trigger a return when data is ready to be written to

·        fd_set *errorfds - File descriptors that will trigger a return when an exception occurs

·        struct timeval *timeout - The maximum period select() should wait for an event


The return value indicates the number of file descriptors (fds) whose request event has been satisfied.

You can’t modify the fd_set structure by changing its value directly. The only portable way to either set or retrieve the value is by using the provided FD_* macros:

·        FD_ZERO(fd_set *) - Initializes an fd_set to be empty

·        FD_CLR(int fd, fd_set *) - Removes the associated fd from the fd_set

·        FD_SET(int fd, fd_set *) - Adds the associated fd to the fd_set

·        FD_ISSET(int fd, fd_set *) - Returns a nonzero value if the fd is in fd_set


Upon return from select(), FD_ISSET() can be called for each fd in a given set to identify whether its condition has been met.

With the timeout value, you can specify how long select() will wait for an event. Iftimeout is NULL, select() will wait indefinitely for an event. If timeout's timevalstructures are set to 0, select() will return immediately rather than wait for any event to occur. Otherwise, timeout defines how long select() will wait. 

/*TCP SERVER_SELECT*/

#include  <stdio.h>

#include  <stdlib.h>

#include  <unistd.h>

#include  <errno.h>

#include  <string.h>

#include  <sys/types.h>

#include  <sys/stat.h>

#include
<sys/select.h>

#include
<sys/time.h>

#include  <sys/socket.h>

#include  <netinet/in.h>

#include  <arpa/inet.h>

#include  <fcntl.h>

#define MAXLINE 100

#define SERV_PORT 13153

int main(int argc, char **argv)

{


int
k,
i, maxi, maxfd, listenfd, connfd, sockfd;


int
nready, client[FD_SETSIZE];


ssize_t
n;


fd_set
rset, allset;


char

line[MAXLINE],buf[100];


socklen_t
clilen;


struct sockaddr_in
cliaddr, servaddr;


listenfd = socket(AF_INET, SOCK_STREAM, 0);


if (listenfd < 0 ) 


{



perror("socket" );



exit(1);


}


bzero(&servaddr, sizeof(servaddr));


servaddr.sin_family      = AF_INET;


servaddr.sin_addr.s_addr = htonl(INADDR_ANY);


servaddr.sin_port        = htons(SERV_PORT);


bind(listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));


listen(listenfd,5);


maxfd = listenfd;


/* initialize */


maxi = -1;




/* index into client[] array */


for (i = 0; i < FD_SETSIZE; i++)



client[i] = -1;


/* -1 indicates available entry */


FD_ZERO(&allset);


FD_SET(listenfd, &allset);

/* end fig01 */

/* include fig02 */


for ( ; ; ) {



printf("Server:I am waiting-----Start of Main Loop\n");



rset = allset;

/* structure assignment */



nready = select(maxfd+1, &rset, NULL, NULL, NULL);



if (FD_ISSET(listenfd, &rset)) {


/* new client connection */




clilen = sizeof(cliaddr);




connfd = accept(listenfd, (struct sockaddr *) &cliaddr, &clilen);

#ifdef
NOTDEF



printf("new client: %s, port %d\n",inet_ntop(AF_INET, 

&cliaddr.sin_addr, buf, NULL),ntohs(cliaddr.sin_port));

#endif




for (i = 0; i < FD_SETSIZE; i++)





if (client[i] < 0) {






client[i] = connfd;
/* save descriptor */






break;





}




if (i == FD_SETSIZE)




  {




  printf("too many clients");




  exit(0);




  }




FD_SET(connfd, &allset);


/* add new descriptor to set */




if (connfd > maxfd)





maxfd = connfd;




/* for select */




if (i > maxi)





maxi = i;





/* max index in client[] array */




if (--nready <= 0)





continue;





/* no more readable descriptors */



}



for (i = 0; i <= maxi; i++) {


/* check all clients for data */




if ( (sockfd = client[i]) < 0)





continue;




if (FD_ISSET(sockfd, &rset)) {





if ( (n = read(sockfd, line, MAXLINE)) == 0) {







/*4connection closed by client */






close(sockfd);






FD_CLR(sockfd, &allset);






client[i] = -1;





} else





{

printf("\n output at server\n");

for(k=0;line[k]!='\0';k++)

printf("%c",toupper(line[k]));


write(sockfd, line, n);

}





if (--nready <= 0)






break;





/* no more readable descriptors */




}



}


}

}

/* end fig02 */

/*TCP CLIENT_SELECT*/

************************************************************

*
FILENAME : democlient.c

*
DESCRIPTION:Contains Code for a client that will send a string 


*
to a server process and exits.

*
Invoke the Executable as a.out IPAddress PortNo string   

*
Copyright 2007 Aricent 

************************************************************/

#include
<stdio.h>

#include
<stdlib.h>

#include
<unistd.h>

#include
<errno.h>

#include
<string.h>

#include
<sys/types.h>

#include
<sys/stat.h>

#include
<sys/socket.h>

#include
<netinet/in.h>

#include
<arpa/inet.h>

#include
<fcntl.h>

#define MAXBUFFER 1024

void sendstring(int , char *);

int main( int C, char *V[] )

{


int
sd,fd;

char c;


struct
sockaddr_in serveraddress;


char text[100];

int i=0;


sd = socket( AF_INET, SOCK_STREAM, 0 );


if( sd < 0 ) {



perror( "socket" );



exit( 1 );


}


if (V[1] == NULL ) {


printf ("PL specfiy the server's IP Address \n");


exit(0);


}


if (V[2] == NULL ) {


printf ("PL specify the server's Port No \n");


exit(0);


}


memset( &serveraddress, 0, sizeof(serveraddress) );


serveraddress.sin_family = AF_INET;


serveraddress.sin_port = htons(atoi(V[2]));//PORT NO


serveraddress.sin_addr.s_addr = inet_addr(V[1]);//ADDRESS


if (connect(sd,(struct sockaddr*)&serveraddress,




sizeof(serveraddress))<0)


{



printf("Cannot Connect to server");



exit(1);


}

printf("enter sentence to end enter #");

while(1)

{

c=getchar();

if(c=='#')

break;

text[i++]=c;

}

text[i]='\0';


sendstring(sd,text);


close(sd);


return 0;

}

/***********************************************************

*
FUNCTION NAME:sendstring

*
DESCRIPTION: sends a string over the socket .

*
NOTES : No Error Checking is done .

*
RETURNS :void 

**********************************************************/

void sendstring(


int sd,

/*Socket Descriptor*/
 


char *fname)
/*Array Containing the string */

/***********************************************************/

{
int n , byteswritten=0 , written ;


char buffer[MAXBUFFER];


strcpy(buffer , fname);


n=strlen(buffer);


while (byteswritten<n)


{



written=write(sd , buffer+byteswritten,(n-byteswritten));



byteswritten+=written;


}


printf("String  : %s sent to server \n",buffer);

}

/***********************************************************/

EXECUTION AND RESULTS

Compiling and running server.

root@localhost week7and8]# cc tcpservselect01.c

[root@localhost week7and8]# mv a.out tcpservselect1

[root@localhost week7and8]# ./tcpservselect

bash: ./tcpservselect: No such file or directory

You have new mail in /var/spool/mail/root

[root@localhost week7and8]# ./tcpservselect1

Server:I am waiting-----Start of Main Loop

Server:I am waiting-----Start of Main Loop

 output at server

 A B C DServer:I am waiting-----Start of Main Loop

 output at server

 A B C DServer:I am waiting-----Start of Main Loop

Server:I am waiting-----Start of Main Loop

Compiling and running Client.

root@localhost week7and8]# ./tcpclient 127.0.0.1 13153

enter sentence to end enter #abcd#

String  : abcd sent to server 

TCP concurrent server to echo given set of sentences using poll functions

poll() description
The poll() method attempts to consolidate the arguments of select() and provides notification of a wider range of events. The SUSv2 defines poll() as follows:


int poll(struct pollfd fds[ ], nfds_t nfds, int timeout);

It takes these parameters:

·        struct pollfd fds[ ] - An array of pollfd structures

·        nfds_t nfds - The number of file descriptors set in fds[ ]

·        int timeout - How long poll() should wait for an event to occur (in milliseconds)


The return value indicates how many fds had an event occur.

A pollfd struct typically includes the following members:

·        int fd - Indicates which fd to monitor for an event

·        short events - A bitwise field that represents which events will be monitored

·        short revents - A bitwise field that represents which events were detected in a call to poll()

Program 

TCP_Server_poll code

#include 
<stdlib.h>

#include  <stdio.h>

#include  <string.h>

#include  <sys/types.h>

#include  <sys/stat.h>

#include  <sys/socket.h>

#include  <netinet/in.h>

#include  <arpa/inet.h>

#include  <fcntl.h>

#include
<limits.h>

/* for OPEN_MAX */

#include 
<poll.h>

#include  <errno.h>

#define MAXLINE 100

#define SERV_PORT 13153

#define POLLRDNORM 5

#define INFTIM 5

#define OPEN_MAX 5

int main(int argc, char **argv)

{


int
k,
i, maxi, listenfd, connfd, sockfd;


int
nready;


ssize_t n;


char

line[MAXLINE];


socklen_t
clilen;


struct pollfd
client[OPEN_MAX];


struct sockaddr_in
cliaddr, servaddr;


listenfd = socket(AF_INET, SOCK_STREAM, 0);


bzero(&servaddr, sizeof(servaddr));


servaddr.sin_family      = AF_INET;


servaddr.sin_addr.s_addr = htonl(INADDR_ANY);


servaddr.sin_port        = htons(SERV_PORT);


bind(listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));


listen(listenfd, 5);


client[0].fd = listenfd;


client[0].events = POLLRDNORM;


for (i = 1; i < OPEN_MAX; i++)



client[i].fd = -1;



/* -1 indicates available entry */


maxi = -1;






/* max index into client[] array */

/* end fig01 */

/* include fig02 */


for ( ; ; ) {



nready = poll(client, maxi+1, INFTIM);



if (client[0].revents & POLLRDNORM) {


/* new client connection */




clilen = sizeof(cliaddr);




connfd = accept(listenfd, (struct sockaddr *) 

&cliaddr, &clilen);

#ifdef
NOTDEF




printf("new client: %s\n", sock_ntop((struct 

sockaddr *) &cliaddr, clilen));

#endif




for (i = 1; i < OPEN_MAX; i++)





if (client[i].fd < 0) {






client[i].fd = connfd;


/* save descriptor */






break;





}




if (i == OPEN_MAX)

{





printf("too many clients");





exit(0);

}




client[i].events = POLLRDNORM;




if (i > maxi)





maxi = i;





/* max index in client[] array */




if (--nready <= 0)





continue;





/* no more readable descriptors */



}



for (i = 1; i <= maxi; i++) {




/* check all clients for data */




if ( (sockfd = client[i].fd) < 0)





continue;




if (client[i].revents & (POLLRDNORM | POLLERR)) {





if ( (n = read(sockfd, line, MAXLINE)) < 0) {






if (errno == ECONNRESET) {






/*4connection reset by client */

#ifdef
NOTDEF




printf("client[%d] aborted connection\n", i);

#endif







close(sockfd);







client[i].fd = -1;






} else







printf("readline error");





} else if (n == 0) {







/*4connection closed by client */

#ifdef
NOTDEF




printf("client[%d] closed connection\n", i);

#endif






close(sockfd);






client[i].fd = -1;





} else{ 

 printf("\n data from client is \n");

                         printf(" data = %s\n",line);






//write(sockfd, line, n); 

                          strcpy(line,"  ");



}





if (--nready <= 0)






break;





/* no more readable descriptors */




}



}


}

}

/* end fig02 */

/*Client*/

This program is same as client program of previous example.

Execution & results:

Compiling and running server.

cc tcpservpoll01.c

[root@localhost week8]# mv a.out pollserv

mv: overwrite `pollserv'? y

[root@localhost week8]# ./pollserv

 data from client is 

  length=5  data = abcd�

 data from client is 

  length=11  data = hjkkl ￼�,

 data from client is 

  length=11  data = abcdl ￼�,

 data from client is 

  length=24  data = aaaaaaaaaaaaaaaaaaaaaaaa

Compiling and running Client.

cc democlient.c

mv a.out client

./client 127.0.0.1 13153

enter sentence to end enter #abcd#

String  : abcd sent to server 

[root@localhost week8]# ./client 127.0.0.1 13153

enter sentence to end enter #hjkkl #

String  : hjkkl  sent to server 

[root@localhost week8]# ./client 127.0.0.1 13153

enter sentence to end enter #abcd#

String  : abcd sent to server 

[root@localhost week8]# ./client 127.0.0.1 13153

enter sentence to end enter #aaaaaaaaaaaaaaaaaaaaaaaa#

String  : aaaaaaaaaaaaaaaaaaaaaaaa sent to server 

The User Datagram Protocol

Introduction:

The TCP/IP protocol suite provides two transport protocols, the User Datagram Protocol (UDP) described in this chapter, and the Transmission Control Protocol (TCP).There are some fundamental differences between applications written using TCP versus those that use UDP. These are because of the differences in the two transport layers:

UDP is a connectionless, unreliable, datagram protocol, quite unlike the connection-oriented, reliable byte stream provided by TCP. UDP is less complex and easier to understand. 

The characteristics of UDP are given below. 

· End-to-end. UDP can identify a specific process running on a computer. 

· Connectionless. UDP follows the connectionless paradigm (see below). 

· Message-oriented. Processes using UDP send and receive individual messages called segments. 

· Best-effort. UDP offers the same best-effort delivery as IP. 

· Arbitrary interaction. UDP allows processes to send to and receive from as many other processes as it chooses. 

· Operating system independent. UDP identifies processes independently of the local operating system. 

The Connectionless Paradigm

UDP uses a connectionless communication setup. A process using UDP does not need to establish a connection before sending data and when two processes stop communicating there are no additional, control messages. Communication consists only of the data segments themselves. 

Message-Oriented Interface

UDP provides a message-oriented interface. Each message is sent as a single UDP segment, which means that data boundaries are preserved. However, this also means that the maximum size of a UDP segment depends on the maximum size of an IP datagram. Allowing large UDP segments can cause problems. Processes sending large segments can result in IP fragmentation, quite often on the sending computer. 

UDP offers the same best-effort delivery as IP, which means that segments can be lost, duplicated, or corrupted in transit. This is why UDP is suitable for applications such as voice or video that can tolerate delivery errors. See below for more on UDP problems. 

UDP Datagram Format

UDP provides a way for applications to send encapsulated IP datagram without having to establish a connection. UDP transmits segments consisting of an 8-byte header followed by the payload. The format is shown in Figure  
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UDP header

· The SOURCE PORT field identifies the UDP process which sent the datagram. 

· The DESTINATION PORT field identifies the UDP process that will handle the payload. 

· The MESSAGE LENGTH field includes the 8-byte header and the data, measured on octets. 

· The CHECKSUM field is optional and stored as zero if not computed (a computed zero is stored as all ones). 

Note that UDP does not provide flow control, error control, or retransmission on receipt of a bad segment. All it provides is demultiplexing multiple processes using the port numbers. 

The UDP Checksum

The 16-bit CHECKSUM field is optional. The sender can choose to compute a checksum or set the field to zero. The receiver only verifies the checksum if the value is non-zero. Note that UDP uses ones-complement arithmetic, so a computed zero value is stored as all-ones. 

UDP Problems

Since UDP provides only a simple delivery service, almost all of the problems with UDP are related to delivery problems. 

· UDP-based applications are prone to failures in a congested or loss-intensive network because a lost UDP datagram has to be handled by the application.

· As an extreme example, consider the Network File System (NFS) which uses UDP for remote file system access, since it benefits from the low-overhead nature of UDP. NFS typically writes data in large chunks (often 8 KB blocks), which are then split into IP fragments depending on the MTU of the underlying topology. 

· Only when all the fragments have been received at the destination is the IP datagram reassembled and passed via UDP to the NFS application. If the underlying network loses 10% - 20% of its datagram’s, then NFS will encounter problems, resulting in retransmission of data and thus providing a sluggish and poor performance. 

UDP Client and server application to reverse the given input sentence

Here's an example UDP echo server I created from a simple UDP example (originally to help another thread question, now solved). Additionally, it shows how to use select() to poll the socket (with an optional time out).



/*Client*/

The following program shows the contents of Filename : udp_client.c.

#include
<stdio.h>

#include
<stdlib.h>

#include
<errno.h>

#include
<string.h>

#include
<sys/types.h>

#include
<sys/socket.h>

#include
<netinet/in.h>

#include
<arpa/inet.h>

#include
<fcntl.h>

#include
<signal.h>

#include
<unistd.h>

#define BUFSIZE 512

static void sig_usr(int);

void str_cli(FILE *fp , int sockfd , struct sockaddr *server , socklen_t len);

int main( int C, char *argv[] )

{


int
sd;


struct
sockaddr_in



serveraddress;


/*Installing signal Handlers*/


signal(SIGPIPE,sig_usr);


signal(SIGINT,sig_usr);


if (NULL==argv[1])


{



printf("Please enter the IP Address of the server\n");



exit(0);


}


if (NULL==argv[2])


{



printf("Please enter the Port Number of the 

server\n");



exit(0);


}


sd = socket( AF_INET, SOCK_DGRAM, 0 );


if( sd < 0 ) 


{



perror( "socket" );



exit( 1 );


}


memset( &serveraddress, 0, sizeof(serveraddress) );


serveraddress.sin_family = AF_INET;


serveraddress.sin_port = htons(atoi(argv[2]));

//PORT NO


serveraddress.sin_addr.s_addr = inet_addr(argv[1]);

//ADDRESS


printf("Client Starting service\n");


printf("Enter Data For the server\n");


str_cli(stdin,sd ,(struct sockaddr *)&serveraddress,




sizeof(serveraddress));

}

/*******************************************************

*
FUNCTION NAME:sig_usr

*
DESCRIPTION: Signal Handler for Trappinf SIGPIPE

*
NOTES : No Error Checking is done .

*
RETURNS :void 

*********************************************************/

static void sig_usr(


int signo) /*Signal Number*/

/********************************************************/

{


char *strpipe="RECEIVED SIGPIPE - ERROR";


char *strctrl="RECEIVED CTRL-C FROM YOU";


if(signo==SIGPIPE)


{



write(1,strpipe,strlen(strpipe));



exit(1);


}


else if(signo==SIGINT)


{



write(1,strctrl,strlen(strctrl));



exit(1);


}

}

/*******************************************************

*
FUNCTION NAME:str_cli

*
DESCRIPTION: Main Client Processing (Select waits for 

readiness of 

*
connection socket or stdin

*
NOTES : No Error Checking is done .

*
RETURNS :void 

*********************************************************/

void str_cli(FILE *fp,



/*Here to be used as stdin as argument*/
 



int sockfd ,



struct sockaddr *to ,socklen_t length)


/*Connection Socket */

/******************************************************/

{


int maxdes,n;


fd_set rset;


char sendbuf[BUFSIZE] , recvbuf[BUFSIZE] ,servername[100];


struct sockaddr_in serveraddr;


socklen_t slen;


FD_ZERO(&rset);


maxdes=(sockfd>fileno(fp)?sockfd+1:fileno(fp)+1);


for(;;){


FD_SET(fileno(fp) , &rset);


FD_SET(sockfd , &rset);


select(maxdes,&rset,NULL,NULL,NULL);


if(FD_ISSET(sockfd , & rset))


{



slen=sizeof(serveraddr);



n=recvfrom(sockfd,recvbuf,BUFSIZE,0,





(struct sockaddr*)&serveraddr,&slen);



printf("Data Received from server %s:\n",



inet_ntop(AF_INET,&serveraddr.sin_addr,





servername,sizeof(servername)));



write(1,recvbuf,n);



printf("Enter Data For the server\n");


}


if(FD_ISSET(fileno(fp) , & rset))


{




/*Reading data from the keyboard*/



fgets(sendbuf,BUFSIZE,fp);



n = strlen (sendbuf);



/*Sending the read data over socket*/



sendto(sockfd,sendbuf,n,0,to,length);



printf("Data Sent To Server\n");


}

}

}

/*******************************************************/

/*Server*/

The following program shows the contents of Filename : udp_server.c.

#include
<stdio.h>

#include
<stdlib.h>

#include
<errno.h>

#include
<string.h>

#include
<sys/types.h>

#include
<sys/socket.h>

#include
<netinet/in.h>

#include
<arpa/inet.h>

#include
<sys/wait.h>

#include
<fcntl.h>

#include
<signal.h>

#define BUFSIZE 512

#define MYPORT 11710

#define MAXNAME 100 

int main(int C, char **V )

{


int
sd,n,ret;


struct
sockaddr_in



serveraddress,cliaddr;


socklen_t length;


char clientname[MAXNAME],datareceived[BUFSIZE];


char temp[50],arev[50],temp1[50];;


int len,k,a;


sd = socket( AF_INET, SOCK_DGRAM, 0 );


if( sd < 0 ) {



perror( "socket" );



exit( 1 );


}


memset( &serveraddress, 0, sizeof(serveraddress) );


memset( &cliaddr, 0, sizeof(cliaddr) );


serveraddress.sin_family = AF_INET;


serveraddress.sin_port = htons(MYPORT);

//PORT NO


serveraddress.sin_addr.s_addr = htonl(INADDR_ANY);

//IP ADDRESS


ret=bind(sd,(struct sockaddr*)&serveraddress,sizeof(serveraddress));


if(ret<0)


{



perror("BIND FAILS");



exit(1);


}


for(;;)


{



printf("I am waiting\n");



/*Received a datagram*/



length=sizeof(cliaddr);



n=recvfrom(sd,datareceived,BUFSIZE,0,





(struct sockaddr*)&cliaddr , &length);



printf("Data Received from %s\n",





inet_ntop(AF_INET,&cliaddr.sin_addr,






clientname,sizeof(clientname)));



/*Sending the Received datagram back*/



datareceived[n]='\0';



printf("I have received %s\n",datareceived);

strcpy(temp,datareceived);

                for(k=0;temp[k]!=0;k++);

                  len=k;

a=0;

for(k=len-1;k>=0;k--)

temp1[a++]=temp[k];

temp1[a]='\0';

 printf("\nrev is %s\n", temp1);



sendto(sd,datareceived,n,0,

(struct sockaddr*)&cliaddr,length);


}

}

Execution & result :

Compiling and running server.

[user@localhost week9]$ cc udp_server.c

[user@localhost week9]$ mv a.out udp_server

[user@localhost week9]$ ./ udp_server

I am waiting

Data Received from 127.0.0.1

I have received abcd efgh

rev is 

hgfe dcba

I am waiting

Compiling and running client.

user@localhost week9]$ cc udp_client.c

[user@localhost week9]$ mv a.out udp_client

[user@localhost week9]$ ./ udp_client 127.0.0.1 11710

Client Starting service

Enter Data For the server

abcd efgh

Data Sent To Server

Data Received from server 127.0.0.1:

abcd efgh

Enter Data For the server


Remote Procedure Call

Request-reply interactions over networks can be structured like procedure calls (or function calls in conventional programming languages). This Remote Procedure Call (RPC) is the basis of many networking applications. 

The idea behind RPC is to make a remote procedure call appear just like a local one. The client (caller) program is bound to a client stub procedure. Similarly the server (callee) program is bound to a server stub procedure. The actual RPC is illustrated in Figure 5. 
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Figure 5: Remote procedure call

1. The client calls the client stub - a local procedure call with the arguments on the stack in the normal way. 

2. The client stub packs the parameters into a packet and makes a system call to send the packet over the network. 

3. The kernel sends the packet from the client machine to the server machine. 

4. The kernel passes the incoming packet to the server stub. 

5. The server stub calls the server procedure with the unpacked parameters. 

The results are processed and returned in the reverse order. There are a number of problems associated with RPCs, in particular byte ordering and floating-point number representations.

Programs:

Design a RPC application to pass a simple variable through RPC connection.

Step 1:

First create RPC specification file with .x extension which defines the server procedure along with their arguments and results.

The following program shows the contents of Filename : rpctime.x.

/********************************************************************/

/*** rpctime.x                                                      */

/*** SPECIFICATION FILE TO DEFINE SERVER PROCEDURE AND ARGUMENTS  ***/

/********************************************************************/

program RPCTIME

{


version RPCTIMEVERSION


{



long GETTIME() = 1;


} = 1;

} = 2000001;

Step 2:

/*Server*/

The following program shows the contents of Filename : rpctime_server.c

#include "rpctime.h"

long *gettime_1_svc(void *argp, struct svc_req *rqstp)

{


static long  result;


time(&result);


return &result;

}

Step 3:

/*Client*/

The following program shows the contents of Filename : rpctime_client.c

#include "rpctime.h"

Void rpctime_1(char *host)

{


CLIENT *clnt;


long  *result_1;


char *gettime_1_arg;

#ifndef
DEBUG


clnt = clnt_create (host, RPCTIME, RPCTIMEVERSION, "udp");


if (clnt == NULL) {



clnt_pcreateerror (host);



exit (1);


}

#endif
/* DEBUG */


result_1 = gettime_1((void*)&gettime_1_arg, clnt);


if (result_1 == (long *) NULL) {



clnt_perror (clnt, "call failed");


}


else



printf("%d |%s", *result_1, ctime(result_1));

#ifndef
DEBUG


clnt_destroy (clnt);

#endif
 /* DEBUG */

}

int main (int argc, char *argv[])

{


char *host;


if (argc < 2) {



printf ("usage: %s server_host\n", argv[0]);



exit (1);


}


host = argv[1];


rpctime_1 (host);

exit (0);

}

Execution procedure and Result:

Step 1:

[user@localhost $]$ rpcgen –C rpctime.x.

This creates rpctime.h, rpctime_clnt.c, rpctime_svc.c files in the folder

Step 2:

[user@localhost $]$cc –c rpctime_client.c –o rpctime_clien.o

Step 3:

[user@localhost $]$cc –o client rpctime_client.o 

rpctime_clnt.o -lnsl

 Step 4:

[user@localhost $]$cc –c rpctime_server.c –o rpctime_server.o

Step 5:

[user@localhost $]$cc –o server rpctime_server.o 

rpctime_svc.o -lnsl

[root@localhost $]$./server &

[1] 7610

[root@localhost $]$./client 127.0.0.1

1277628700 |Sun Jun 27 14:21:40 2010

[root@localhost $]$./client 127.0.0.1

1277628718 |Sun Jun 27 14:21:58 2010
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